

 A

 MAJOR PROJECT REPORT ON

GENERATIVE ADVERSARIAL NETWORKS FOR RETINAL

IMAGE ENHANCEMENT WITH PATHOLOGICAL

INFORMATION

 Submitted in partial fulfillment of the requirement for the award of degree of

BACHELOR OF TECHNOLOGY

 IN

 ELECTRONICS AND COMMUNICATION ENGINEERING

 SUBMITTED BY

 ROUTHU. AKHILESWARA RAO 218R1A04O8

 SHAIK. MD. RABBANI 218R1A04O9

 SHAIK. RIYAZ PASHA 218R1A04P0

 SRIGADHI. BHANU TEJA 218R1A04P1

 Under the Esteemed Guidance of

 Mrs. K. VANI

 Associate Professor

 DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

 CMR ENGINEERING COLLEGE

 UGC AUTONOMOUS

 (Approved by AICTE, Affiliated to JNTU Hyderabad, Accredited by NBA)

 Kandlakoya(V), Medchal(M), Telangana –501401

(2024-2025)

i

CMR ENGINEERING COLLEGE
UGC AUTONOMOUS

(Approved by AICTE, Affiliated to JNTU Hyderabad, Accreditedby

NBA) Kandlakoya (V), Medchal Road, Hyderabad - 501 401

 DEPARTMENT OF ELECTRONICS AND COMMUNICATION

ENGINEERING

CERTIFICATE

This is to certify that Major project work entitled “GENERATIVE ADVERSARIAL

NETWORKS FOR RETINAL IMAGE ENHANCEMENT WITH PATHOLOGICAL

INFORMATION” is being Submitted by R. AKHILESWARA RAO bearing Roll No:

218R1A04O8, S.MD. RABBANI bearing Roll No: 218R1A04O9, SK. RIYAZ PASHA

bearing Roll No: 218R1A04P0, S. BHANU TEJA bearing Roll No: 218R1A04P1 in

B.Tech IV-II Semester, Electronics and Communication Engineering is a record bonafide

work carried out by then during the academic year 2024-25.

INTERNAL GUIDE HEAD OF THE DEPARTMENT

Mrs. K. VANI Dr. SUMAN MISHRA

Associate Professor Professor & HOD

 EXTERNAL EXAMINER

ii

ACKNOWLEDGEMENTS

We sincerely thank the management of our college CMR Engineering College for

providing required facilities during our project work. We derive great pleasure in

expressing our sincere gratitude to our Principal Dr. A. S. Reddy for his timely

suggestions, which helped us to complete the project work successfully. It is the very

auspicious moment we would like to express our gratitude to Dr. SUMAN MISHRA,

Head of the Department, ECE for his consistent encouragement during the progress of this

project.

We take it as a privilege to thank our major project coordinator

Dr. T. SATYANARAYANA, Professor, Department of ECE for the ideas that led to

complete the project work and we also thank him for his continuous guidance, support and

unfailing patience, throughout the course of this work. We sincerely thank our project

internal guide Mrs. K. VANI, Associate Professor of ECE for guidance and encouragement

in carrying out this project work.

iii

DECLARATION

We hereby declare that the Major project entitled “GENERATIVE ADVERSARIAL

NETWORKS FOR RETINAL IMAGE ENHANCEMENT WITH PATHOLOGICAL

INFORMATION” is the work done by us in campus at CMR ENGINEERING

COLLEGE, Kandlakoya during the academic year 2024-2025 and is submitted as major

project in partial fulfillment of the requirements for the award of degree of BACHELOR

OF TECHNOLOGY in ELECTRONICS AND COMMUNICATION ENGINEERING

FRO JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY, HYDERABAD.

R. AKHILESWARA RAO 218R1A04O8

S. MD. RABBANI 218R1A04O9

 SK. RIYAZ PASHA 218R1A04P0

S. BHANU TEJA 218R1A04P1

iv

 ABSTRACT

Age- related macular degeneration (AMD) is a disease of the central retina, which is one of

the main reasons for vision loss of elderly people. To monitor the level of AMD, the doctors

mainly use the retinal fundus images. However, the quality of retinal images can be affected

during the imaging process. It leads to low contrast and blurry images. Those bad quality

images cannot be used for analyzing and diagnosis. For that reason, there are many studies

about image enhancement in order to improve the quality of retinal photography. However,

previous methods could not guarantee to keep the disease information after the enhancement

process. Therefore, we introduce a generative adversarial model for AMD retinal image

enhancement with additional factors to preserve the disease information. By exploiting

drusen segmentation masks, our proposed model can enhance retinal photography quality

and keep the pathological information.

v

CONTENTS

 CHAPTERS PAGE NO

 CERTIFICATE I

 ACKNOWLEDGEMENT II

 DECLARATION BY THE CANDIDATE III

 ABSTRACT IV

 CONTENTS V

 LIST OF FIGURES VII

 LIST OF TABLES VIII

 CHAPTER-1

 INTRODUCTION 1

 1.1 OVER VIEW 1

 CHAPTER-2

 LITERATURE SURVEY 3

 CHAPTER-3

 SOFTWARE INTRODUCTION 7

 3.1 INTRODUCTION TO MATLAB 7

 3.2 THE MATLAB SYSTEM 8

 3.3 GRAPHICAL USER INTERFACE 9

 3.4 SOFTWARE DESCRIPTION 11

 3.4.1 Getting Started 11

 3.4.2 Introduction 11

 3.4.3 Development Environment 11

 3.4.4 Manipulating Matrices 11

 3.4.5 Graphics 11

 3.4.6 Programming with Matlab 11

 3.5 Development Environment 13

 3.5.1 Introduction 13

 3.5.2 Starting Matlab 13

 3.5.3 Quitting Matlab 13

 3.5.4 Matlab Desktop 13

 3.5.5 Desktop Tools 14

vi

 3.6 Manipulating Matrices 17

 3.6.1 Entering Matrices 17

 3.6.2 Expressions 18

 3.6.3 Operators 19

 3.6.4 Functions 19

 3.7 GUI 20

 3.7.1 Creating Guis with Guide 21

 3.7.2 Gui Development Environment 21

 3.7.3 Features of The Guide-Generated Application M-File 22

 3.7.4 Beginning The Implementation Process 23

 3.7.5 User Interface Controls 23

3.8 INTRODUCTION TO IMAGE PROCESSING 32

 3.8.1 Image 32

 3.8.2 Image File Sizes 33

 3.8.3 Image File Formats 34

 3.8.4 Image Processing 37

 CHAPTER-4

 EXISTING SYSTEM 46

 CHAPTER-5

 PROPOSED SYSTEM 51

 5.1 RETINAL NERVE FIBER LAYER AND SCANNING LASER 51

 POLARIMETRY

 CHAPTER 6

 RESULT

 6.1 RESULT 55

 6.2 APPLICATIONS 58

 6.3 ADVANTAGES 58

 CHAPTER 7

 CONCLUSION & FEATURE OPTIMIZATION

 7.1 CONCLUSION 59

 7.2 FEATURE OPTIMIZATION 59

 REFERRENCES 60

 APPENDIX 62

vii

 LIST OF FIGURES

 FIGURE NO FIGURE NAME PAGE

 Fig: 1.1 Photograph of a scanning laser Polarimetry device 2

 Fig: 3.1 Graphical user Interface 10

 Fig: 3.2 Graphical user Blocks 22

 Fig: 3.3 General Image 32

 Fig: 3.4 Image Pixel 33

 Fig: 3.5 Transparency Image 33

 Fig: 3.6 Resolution Image 34

 Fig: 3.7 Fundamental Steps In Digital Image Processing 37

 Fig: 3.7.1 Acquisition of Image 38

 Fig: 3.7.2 Enhancement of Image 38

 Fig: 3.7.3 Restoration of Image 39

 Fig: 3.7.4 Color Image 39

 Fig: 3.7.5 Wavelets 40

 Fig: 3.7.6 Binary Image 41

 Fig: 3.7.7 Segmentation of Image 41

Fig: 3.8 Components of an Image Processing System 43

Fig: 4.1 Anatomy of the Eye 48

Fig: 4.2 Photograph of the Optic Nerve with Optic Disc 49

Fig: 5.1 Example of Optic Disc Photography 52

Fig: 5.2 Scanning Laser Polarimetry Device - Principle 53

Fig: 5.3 Color Coded Rnfl Thicknesss Map of the 65356 Points 54

Fig: 5.4 Grayscale Representation of the Rnfl Thickness Map 54

Fig: 6.1 Healthy Retina 58

Fig: 6.2 Age-Related Macular Degeneration 60

Fig: 6.3 Roc Curve 61

viii

TABLE NO

LIST OF TABLES

LIST OF TABLE NAME

PAGE NO

3.1 Arithmetic Operators and Precedence Rules

19

3.2 Special Functions 20

6.1 Performance Evaluation of the Different Feature Sets Based
on the Roc Analysis

61

1

 CHAPTER-1

 INTRODUCTION

1.1 OVER VIEW

Age-related macular degeneration (AMD) encompasses a variety of diseases and conditions.

It is a group of optic nerve diseases, with ‘characteristic’ progressive structural changes

leading to loss of visual function in a ‘characteristic’ way. AMD is the second leading cause

of blindness worldwide. The retina is the innermost layer in the eye and the retinal nerve

fibers transmit the visual signal from the photoreceptors in the eye to the brain via the bundle

going out of the eye, known as the optic nerve. AMD leads to continuous and speedy damage

of the retinal nerve fiber layer and hence can lead to permanent blindness. The progression

of the nerve fiber layer loss can be effectively stopped by treatment consisting of medication

or surgery to reduce the intraocular pressure. Hence the diagnosis of AMD at an earlier stage

is very important for its treatment.

A major concern with AMD detection is that the disease has no particular set of

physical causes or symptoms that doctors can recognize to detect the disease in an early

stage. The main focus in AMD diagnosis is to detect changes in the visual functioning of the

eye at early stages of the disease so that vision can be protected and preserved through

medical treatment. It has been proved that the development of visual field defects is preceded

by RNFL damage in Age-related macular degeneration (AMD).

Studies show that as much as 40% of retinal nerve fiber in the eye can be lost without

the detection of characteristic visual defect in AMD patients. Hence it is believed that the

detection of damage in nerve fiber layer can lead to an early detection of AMD. Several

computer-assisted imaging technologies for detecting the structural changes in the retinal

nerve fiber layer have been developed. The assessment of the ganglion cell structure is based

on measuring the thickness of the retinal nerve fiber layer.

One such device, the Scanning Laser Polarimeter (GDx-VCC, Laser Diagnostic

Technologies, Inc., San Diego, CA) is based on the principle of measuring the change in the

polarization of light exiting the eye. The retinal nerve fiber layer consists of parallel

structures of diameter smaller than the wavelength of light, which makes it a birefringent

structure. A birefringent structure has the ability to change the polarization of polarized light

2

double passing it.7 The amount of change in the state of polarization (retardation) can be The

device provides a large array of points corresponding to retinal.

This is found to be proportional to the thickness of the nerve fiber layer. This

retardation (degrees) information is converted to thickness (microns) through the conversion

factor based on the histologic comparison with monkey eyes. A new version of the device

(GDx-VCC) is designed to individually compensate for the effects of birefringent properties

of other parts of the eye like the cornea. The device provides a large array of points

corresponding to retinal never fiber layer thickness at each respective point across the back

of the eye. The scans thus available are in the form of 128 X 256 images or gray-level

thickness maps. The goal of this thesis is to analyze these scans and develop classification

techniques for them.

Figure 1.1 Photograph of a Scanning Laser Polarimetry Device (Courtesy: Laser Diagnostics,

 San Diego, CA)

The first step in a classification problem is to extract useful features from the set of

given data. The original scan is used to derive patterns or features that can separate the two

classes. The feature extraction step is to obtain a feature vector, a set of different useful

features, which reduce the dimension of the original data while keeping all the essential

information contained in the data. The next step after obtaining distinguishable and reliable

set of features is to make them statistically independent. A very effective way to achieve

this end is to perform Principal component analysis on the feature set. This will help in

reducing feature dimension by eliminating redundancy caused by interdependencies in the

feature vector. The last step is the classification of the data set into the two classes. Fisher’s

Linear Discriminant Analysis (LDF) provides an easy and robust way.

3

 CHAPTER-2

 LITERATURE SURVEY

Computer vision and image processing techniques play an important role in all fields of

medical science and are especially relevant to modern Ophthalmology. Medical imaging has

revolutionized the field of medicine by providing cost-effective healthcare and efficient

diagnosis in all major disease areas. Medical imaging allows scientists and physicians to

understand potential life-saving information using less invasive techniques. Applications

that can interpret an image are being developed, which in turn can aid a physician in

detecting possible subtle abnormalities. The computer indicates places in the image that

require extra attention from the physician because they could be abnormal. These

technologies known as Computer Aided Diagnosis (CAD) systems show that CAD can be

helpful to improve diagnostic accuracy of physicians and lighten the burden of increasing

workload.

The influence and impact of digital images on modern society, science, technology

and art are tremendous. Image processing has become such a critical component in

contemporary science and technology that many tasks would not be attempted without it.

Digital image processing is an interdisciplinary subject that draws from synergistic

developments involving many disciplines and is used in medical imaging, microscopy,

astronomy, computer vision, geology and many other fields The rapid and continuing

progress in computerized medical imaging, the associated developments in methods of

analysis and computer-aided diagnosis, have propelled medical imaging into one of the most

important sub-fields in scientific imaging. Medical image analysis is an area of research that

attracts intensive interests of scientists and physicians and covers image processing, pattern

recognition and computer visualization. Medical image processing involves the study of

digital images with the objective of providing computational tools which will assist the

quantification and visualization of interesting pathology and anatomical structures. The

progress achieved in this field in recent years has significantly improved the type of medical

care that is available to the patients.

The application of digital imaging to ophthalmology has now provided the

possibility of processing retinal images to assist clinical diagnosis and treatment. Automated

diagnosis of retinal fundus images using digital image analysis offers huge potential

benefits. Due to advances in computer technology, medical diagnosis can be benefited from

4

computers which will assist doctors to analyze medical data and images with improved

accuracy. Designing and developing computer-aided diagnostic tools or systems for medical

images is a fast growing area in recent years.Development of an automated system for

analyzing the images of the retina will facilitate computer aided diagnosis of eye diseases.

The interest towards automatic detection of glaucoma and diabetic retinopathy has been

increasing along with the rapid development of digital imaging and computing power.

However, the most important single event that attracted the wider attention of medical

research community has been the decision to recognize digital imaging as an accepted

modality to document eye fundus. This introductory chapter presents some background

information on the anatomy of the eye, ocular diseases like glaucoma need for screening.

Glaucoma is a chronic disease which if not detected in early stages can lead to

permanent blindness. The medical techniques used by ophthalmologists like HRT and OCT

is costly and time consuming. Hence there is a need to develop automatic computer aided

system which can detect glaucoma efficiently and in less time. Optic disk and optic cup are

prime features which help in diagnosing glaucoma. Thus proper segmentation of optic disk

and optic cup plays an important role in detecting the disorder.

In this paper an adaptive threshold-based method which is independent of image

quality and invariant to noise is used to segment optic disk, optic cup, Neuroretinal rim and

cup to disk ratio is calculated to screen glaucoma. Another ocular parameter, rim to disk

ratio is also considered which in combination with CDR gives more reliability in

determining glaucoma and makes the system more robust. Further an SVM classifier has

been used to categorize the images as glaucomatic or non glaucomatic. The experimental

results obtained are compared with those of ophthalmologist and are found to have high

accuracy of 90%. Also in addition, the proposed method is faster having low computational

cost.

R. Manjula Sri, Ch. Madhubabu, and KMM Rao: Lab VIEW based assessment of

CDR for the detection of Glaucoma

In this paper, Image processing and analysis has great significance in the field of medicine,

especially in non-invasive treatment and clinical study. Glaucoma is a group of diseases,

which damage eye's optic nerve that leads to blindness. These are presented to aid

benchmarking of new methods.

5

Jayanthi Sivaswamy, S.R.Krishnadas, Arunava Chakravarty, Gopal Datt Joshi, and

Ujjwalt A Comprehensive Retinal Image Dataset for the Assessment of Glaucoma from

the Optic Nerve Head Analysis

In this paper, Optic nerve head (ONH) segmentation problem is of interest for automated

glaucoma assessment. Although various segmentation methods have been proposed in the

recent past, it is difficult to evaluate and compare the p individual methods due to a lack of

a benchmark dataset. The assessment involves segmentation of optic disk and cup region

within the ONH. In this paper, we present a comprehensive dataset of retinal images of both

normal and glaucomatous eyes with manual segmentations from multiple human experts.

The dataset also provides expert opinion on an image representing a normal or glaucomatous

eye and on the presence of notching in an image.

Several state of the art methods are assessed against this dataset using cup to disc

diameter ratio (CDR), area and boundary-based evaluation measures. These are presented to

aid benchmarking of new methods. A supervised, notch detection method based on the

segmentation results is also proposed and its assessment results are included for

benchmarking.

Eleesa Jacob, R.Venkatesh: A Method of Segmentation for Glaucoma Screening Using

Superpixel Classification

In this paper, an optic disc and optic cup segmentation is used to identify the glaucoma

disease in time. In optic disc and optic cup segmentation, super pixel classification for

glaucoma screening is proposed. In optic disc segmentation, histograms and centre surround

statistics are used to classify each super pixel as disc or non-disc. A self-assessment

reliability score is computed to evaluate the quality of the automated optic disc

segmentation. In optic cup segmentation, the location information is also included into the

feature space for better performance in addition to the histograms and centre surround

statistics. The segmented optic cup and optic disc is then used to compute the cup to disc

ratio for glaucoma screening. From the cup to disc ratio. analysis is performed to identify

whether the given image is glaucomatous or not. The segmentation can be analyzed using

the MATLAB.

Sheeba O, Jithin George, Rajin P. K., Nisha Thomas, and Sherin George: Glaucoma

Detection Using Artificial Neural Network

In this paper, the nerve that transmits visual images to the brain. Here the detection of

glaucoma is done by image processing. The screening of patients for the development of the

6

glaucoma potentially reduces the risk of blindness in these patients by 50%.

Here neural network is trained to recognize the parameters for the detection of

different stages of the disease. The neuron model has been developed using feed forward

back propagation network. Here the program is developed using Matlab. The images

acquired using medical imaging techniques are analysed in Matlab. Matlab provide variety

of options for image processing that enable us to extract the required features and

information from the images. The software can be used to detect the early stages of glaucoma

Li Xiong, Huiqi Li; Yan Zheng: Automatic detection of glaucoma in retinal images

In this paper, which is based on principle components analysis (PCA) and Bayes

classifier. Firstly, optic disc center is located using the combination of thresholding and

distance transformation. Eigenvector spaces of normal set and glaucoma set are obtained

respectively using PCA. A test image is projected onto these two spaces and the distance

between projection and each template is calculated. Finally. decision is made according to

Bayes classifier. The success rate of optic disk localization is 95.3% and 89.9% for normal

set and glaucoma set respectively. The glaucoma detection algorithm was tested by over

three hundred retinal images and the success rate is 78%.

Dey, N, Roy, A.B.; Das, A.; Chaudhuri, S.S: Optical cup to disc ratio measurement for

glaucoma diagnosis using Harris corner

In this paper, Glaucoma is physiologically described as the deterioration of optic

nerve cells, and is characterized by alterations in the optic nerve head and visual field. The

measurement of neuro-retinal optic cup-to-disc ratio (CDR) is an important index of

Glaucoma, as the increased excavation of the optic cup occurs because of Glaucomatous

neuropathy increasing the CDR. Currently, CDR evaluation is manually performed by

ophthalmologists.

7

 CHAPTER-3

 SOFTWARE INTRODUCTION

3.1. Introduction to MATLAB:

MATLAB is a high-performance language for technical computing. It integrates

computation, visualization, and programming in an easy-to-use environment where

problems and solutions are expressed in familiar mathematical notation. Typical uses include

▪ Math and computation

▪ Algorithm development

▪ Data acquisition

▪ Modeling, simulation, and prototyping

▪ Data analysis, exploration, and visualization

▪ Scientific and engineering graphics

▪ Application development, including graphical user interface building

MATLAB is an interactive system whose basic data element is an array that does not

require dimensioning. This allows you to solve many technical computing problems,

especially those with matrix and vector formulations, in a fraction of the time it would take

to write a program in a scalar non interactive language such as C or FORTRAN.

 The name MATLAB stands for matrix laboratory. MATLAB was originally written

to provide easy access to matrix software developed by the LINPACK and EISPACK

projects. Today, MATLAB engines incorporate the LAPACK and BLAS libraries,

embedding the state of the art in software for matrix computation.

MATLAB has evolved over a period of years with input from many users. In

university environments, it is the standard instructional tool for introductory and advanced

courses in mathematics, engineering, and science. In industry, MATLAB is the tool of choice

for high-productivity research, development, and analysis.

MATLAB features a family of add-on application-specific solutions called

toolboxes. Very important to most uses of MATLAB, toolboxes allow you to learn and apply

specialized technology. Toolboxes are comprehensive collections of MATLAB functions (M

– files) that extend the MATLAB environment to solve particular classes of problems. Areas

8

in which toolboxes are available include signal processing, control systems, neural

networks, fuzzy logic, wavelets, simulation, and many others.

3.2 The MATLAB system:

The MATLAB system consists of five main parts

• Development Environment:

This is the set of tools and facilities that help you use MATLAB functions and files. Many

of these tools are graphical user interfaces. It includes the MATLAB desktop and command

window, a command history, an editor and debugger, and browsers for viewing help, the

workspace, files, and the search path.

• The MATLAB Mathematical Function Library:

This is a vast collection of computational algorithms ranging from elementary functions,

like sum, sine, cosine, and complex arithmetic, to more sophisticated functions like matrix

inverse, matrix Eigen values, Bessel functions, and fast Fourier transforms.

• The MATLAB Language:

This is a high-level matrix/array language with control flow statements, functions, data

structures, input/output, and object-oriented programming features. It allows both

“programming in the small” to rapidly create quick and dirty throw-away programs, and

“programming in the large” to create large and complex application programs.

• Graphics:

MATLAB has extensive facilities for displaying vectors and matrices as graphs, as well as

annotating and printing these graphs. It includes high-level functions for two-dimensional

and three-dimensional data visualization, image processing, animation, and presentation

graphics. It also includes low-level functions that allow you to fully customize the

appearance of graphics as well as to build complete graphical user interfaces on your

MATLAB applications. Areas in which toolboxes are available include signal processing,

control systems. MATLAB features a family of add-on application-specific solutions called

toolboxes.

• The MATLAB Application Program Interface (API):

MATLAB (Matrix Laboratory) is a high-level programming language and environment

specifically designed for numerical computation, data analysis, and visualization. This is a

library that allows you to write C and FORTRAN programs that interact with MATLAB. It

includes facilities for calling routines from MATLAB (dynamic linking), calling MATLAB

9

as a computational engine, and for reading and writing MAT-files. Various toolboxes are

there in MATLAB for computing recognition techniques, but we are using IMAGE

PROCESSING toolbox.

3.3 GRAPHICAL USER INTERFACE (GUI):

MATLAB’s Graphical User Interface Development Environment (GUIDE) provides a rich

set of tools for incorporating graphical user interfaces (GUIs) in M-functions. Using GUIDE,

the processes of laying out a GUI (i.e., its buttons, pop-up menus, etc.)and programming the

operation of the GUI are divided conveniently into two easily managed and relatively

independent tasks. The resulting graphical M-function is composed of two identically named

(ignoring extensions) files:

• A file with extension .fig, called a FIG-file that contains a complete graphical description

of all the function’s GUI objects or elements and their spatial arrangement. A FIG-file

contains binary data that does not need to be parsed when he associated GUI-based M-

function is executed.

• A file with extension .m, called a GUI M-file, which contains the code that controls the

GUI operation. This file includes functions that are called when the GUI is launched and

exited, and callback functions that are executed when a user interacts with GUI objects

for example, when a button is pushed.

To launch GUIDE from the MATLAB command window, type

guide filename

Where filename is the name of an existing FIG-file on the current path. If filename is

omitted,

GUIDE opens a new (i.e., blank) window.

A graphical user interface (GUI) is a graphical display in one or more windows

containing controls, called components that enable a user to perform interactive tasks. The

user of the GUI does not have to create a script or type commands at the command line to

accomplish the tasks. Unlike coding programs to accomplish tasks, the user of a GUI need

not understand the details of how the tasks are performed.

GUI components can include menus, toolbars, push buttons, radio buttons, list boxes,

and sliders just to name a few. GUIs created using MATLAB tools can also perform any

type of computation, read and write data files, communicate with other GUIs, and display

data as tables or as plots. The user of the GUI does not have to create a script or type

10

commands at the command line to accomplish the tasks. Unlike coding programs to

accomplish tasks, the user of a GUI need not understand the details of how the tasks are

performed.

 Fig 3.1 Graphical user interface

11

3.4 Software Description

3.4.1 Getting Started

 If you are new to MATLAB, you should start by reading Manipulating Matrices. The most

important things to learn are how to enter matrices, how to use the: (colon) operator, and

how to invoke functions. After you master the basics, you should read the rest of the sections

below and run the demos.

 At the heart of MATLAB is a new language you must learn before you can fully

exploit its power. You can learn the basics of MATLAB quickly, and mastery comes shortly

after. You will be rewarded with high productivity, high-creativity computing power that

will change the way you work.

3.4.2 Introduction - describes the components of the MATLAB system.

3.4.3 Development Environment - introduces the MATLAB development environment,

including information about tools and the MATLAB desktop.

3.4.4 Manipulating Matrices - introduces how to use MATLAB to generate matrices and

perform mathematical operations on matrices.

3.4.5 Graphics - introduces MATLAB graphic capabilities, including information about

plotting data, annotating graphs, and working with images.

3.4.6 Programming with MATLAB - describes how to use the MATLAB language to

create scripts and functions, and manipulate data structures, such as cell arrays and

multidimensional arrays.

➢ INTRODUCTION

What Is MATLAB?

MATLAB is a high-performance language for technical computing. It integrates

computation, visualization, and programming in an easy-to-use environment where

problems and solutions are expressed in familiar mathematical notation. Typical uses

include:

• Math and computation

• Algorithm development

• Modeling, simulation, and prototyping

• Data analysis, exploration, and visualization

• Scientific and engineering graphics

• Application development, including graphical user interface building

12

MATLAB is an interactive system whose basic data element is an array that does not Require

dimensioning. MATLAB is an interactive system whose basic data element is an array that

does not require dimensioning. This allows you to solve many technical computing

problems, especially those with matrix and vector formulations, in a fraction of the time it

would take to write a program in a scalar noninteractive language such as C or FORTRAN.

 The name MATLAB stands for matrix laboratory. MATLAB was originally written

to provide easy access to matrix software developed by the LINPACK and EISPACK

projects. Today, MATLAB uses software developed by the LAPACK and ARPACK projects,

which together represent the state-of-the-art in software for matrix computation.

MATLAB has evolved over a period of years with input from many users. In

university environments, it is the standard instructional tool for introductory and advanced

courses in mathematics, engineering, and science. In industry, MATLAB is the tool of choice

for high-productivity research, development, and analysis.

MATLAB features a family of application-specific solutions called toolboxes. Very

important to most users of MATLAB, toolboxes allow you to learn and apply specialized

technology. Toolboxes are comprehensive collections of MATLAB functions (M-files) that

extend the MATLAB environment to solve particular classes of problems. Areas in which

toolboxes are available include signal processing, control systems, neural networks, fuzzy

logic, wavelets, simulation, and many others.

➢ The MATLAB System

The MATLAB system consists of five main parts:

• Development Environment. This is the set of tools and facilities that help you use

MATLAB functions and files. Many of these tools are graphical user interfaces. It

includes the MATLAB desktop and Command Window, a command history, and

browsers for viewing help, the workspace, files, and the search path.

• The MATLAB Mathematical Function Library. This is a vast collection of

computational algorithms ranging from elementary functions like sum, sine, cosine, and

complex arithmetic, to more sophisticated functions like matrix inverse, matrix

eigenvalues, Bessel functions, and fast Fourier transforms.

• The MATLAB Language. This is a high-level matrix/array language with control flow

statements, functions, data structures, input/output, and object-oriented programming

features. It allows both "programming in the small" to rapidly create quick and dirty

13

throw-away programs, and "programming in the large" to create complete large and

complex application programs.

• Handle Graphics®. This is the MATLAB graphics system. It includes high-level

commands for two-dimensional and three-dimensional data visualization, image

processing, animation, and presentation graphics. It also includes low-level commands

that allow you to fully customize the appearance of graphics as well as to build complete

graphical user interfaces on your MATLAB applications.

• The MATLAB Application Program Interface (API). This is a library that allows

you to write C and FORTRAN programs that interact with MATLAB. It include facilities

for calling routines from MATLAB (dynamic linking), calling MATLAB as a

computational engine, and for reading and writing MAT-files.

3.5 DEVELOPMENT ENVIRONMENT

3.5.1 Introduction

This chapter provides a brief introduction to starting and quitting MATLAB, and the tools

and functions that help you to work with MATLAB variables and files. For more information

about the topics covered here, see the corresponding topics under Development

Environment in the MATLAB documentation, which is available online as well as in print.

Starting and Quitting MATLAB

3.5.2 Starting MATLAB

 On a Microsoft Windows platform, to start MATLAB, double-click the MATLAB shortcut

icon on your Windows desktop. On a UNIX platform, to start MATLAB, type matlab at the

operating system prompt. After starting MATLAB, the MATLAB desktop opens - see

MATLAB Desktop.

You can change the directory in which MATLAB starts, define startup options including

running a script upon startup, and reduce startup time in some situations.

3.5.3 Quitting MATLAB

To end your MATLAB session, select Exit MATLAB from the File menu in the desktop, or

type quit in the Command Window. To execute specified functions each time MATLAB

quits, such as saving the workspace, you can create and run a finish.m script.

3.5.4 MATLAB Desktop

 When you start MATLAB, the MATLAB desktop appears, containing tools (graphical user

interfaces) for managing files, variables, and applications associated with MATLAB. The

first time MATLAB starts, the desktop appears as shown in the following illustration,

14

first time MATLAB starts, the desktop appears as shown in the following illustration,

although your Launch Pad may contain different entries.

You can change the way your desktop looks by opening, closing, moving, and

resizing the tools in it. You can also move tools outside of the desktop or return them back

inside the desktop (docking). All the desktop tools provide common features such as context

menus and keyboard shortcuts.

You can specify certain characteristics for the desktop tools by selecting Preferences

from the File menu. For example, you can specify the font characteristics for Command

Window text. For more information, click the Help button in the Preferences dialog box.

3.5.5 Desktop Tools

This section provides an introduction to MATLAB's desktop tools. You can also use

MATLAB functions to perform most of the features found in the desktop tools. The tools

are:

• Current Directory Browser

• Workspace Browser

• Array Editor

• Editor/Debugger

• Command Window

• Command History

• Launch Pad

• Help Browser

Command Window

Use the Command Window to enter variables and run functions and M-files.

Command History

Lines you enter in the Command Window are logged in the Command History window. In

the Command History, you can view previously used functions, and copy and execute

selected lines. To save the input and output from a MATLAB session to a file, use the diary

function.

Running External Program

You can run external programs from the MATLAB Command Window. The exclamation

point character! is a shell escape and indicates that the rest of the input line is a command to

the operating system. This is useful for invoking utilities or running other programs without

15

quitting MATLAB. On Linux, for example, !emacs magic. m invokes an editor called emacs

for a file named magik.m. When you quit the external program, the operating system returns

control to MATLAB.

Launch Pad

MATLAB's Launch Pad provides easy access to tools, demos, and documentation.

Help Browser

Use the Help browser to search and view documentation for all your Math Works products.

The Help browser is a Web browser integrated into the MATLAB desktop that displays

HTML documents.

To open the Help browser, click the help button in the toolbar, or type help browser

in the Command Window. The Help browser consists of two panes, the Help Navigator,

which you use to find information, and the display pane, where you view the information.

Help Navigator

Use to Help Navigator to find information. It includes:

Product filter - Set the filter to show documentation only for the products you specify.

Contents tab - View the titles and tables of contents of documentation for your products.

Index tab - Find specific index entries (selected keywords) in the MathWorks

documentation for your products.

Search tab - Look for a specific phrase in the documentation. To get help for a specific

function, set the Search type to Function Name.

Favorites tab - View a list of documents you previously designated as favorites.

Display Pane

After finding documentation using the Help Navigator, view it in the display pane. While

viewing the documentation, you can:

Browse to other pages - Use the arrows at the tops and bottoms of the pages, or use the

back and forward buttons in the toolbar.

Bookmark pages - Click the Add to Favorites button in the toolbar.

Print pages - Click the print button in the toolbar.

Find a term in the page - Type a term in the Find in page field in the toolbar and click Go.

Other features available in the display pane are: copying information, evaluating a selection,

and viewing Web pages. If you just need to view the contents of an M-file, you can display

it in the Command Window by using the type function.

16

Current Directory Browser

MATLAB file operations use the current directory and the search path as reference points.

Any file you want to run must either be in the current directory or on the search path.

Search Path

To determine how to execute functions you call, MATLAB uses a search path to find M-

files and other MATLAB-related files, which are organized in directories on your file

system. Any file you want to run in MATLAB must reside in the current directory or in a

directory that is on the search path. By default, the files supplied with MATLAB and

MathWorks toolboxes are included in the search path. If you just need to view the contents

of an M-file, you can display it in the Command Window by using the type function.

Workspace Browser

The MATLAB workspace consists of the set of variables (named arrays) built up during a

MATLAB session and stored in memory. You add variables to the workspace by using

functions, running M-files, and loading saved workspaces.

To view the workspace and information about each variable, use the Workspace

browser, or use the functions who and who’s. To delete variables from the workspace, select

the variable and select Delete from the Edit menu. Alternatively, use the clear function.

The workspace is not maintained after you end the MATLAB session. To save the

workspace to a file that can be read during a later MATLAB session, select Save Workspace

As from the File menu, or use the save function. This saves the workspace to a binary file

called a MAT-file, which has a .mat extension. There are options for saving to different

formats. To read in a MAT-file, select Import Data from the File menu, or use the load

function.

Array Editor

Double-click on a variable in the Workspace browser to see it in the Array Editor. Use the

Array Editor to view and edit a visual representation of one- or two-dimensional numeric

arrays, strings, and cell arrays of strings that are in the workspace.

Editor/Debugger

Use the Editor/Debugger to create and debug M-files, which are programs you write to

runMATLAB functions. The Editor/Debugger provides a graphical user interface for basic

17

text editing, as well as for M-file debugging. You can use any text editor to create M-files,

such as Emacs, and can use preferences (accessible from the desktop File menu) to specify

that editor as the default. If you use another editor, you can still use the MATLAB

Editor/Debugger for debugging, or you can use debugging functions, such as dbstop, which

sets a breakpoint. If you just need to view the contents of an M-file, you can display it in the

Command Window by using the type function.

3.6 MANIPULATING MATRICES

3.6.1 Entering Matrices

The best way for you to get started with MATLAB is to learn how to handle matrices. Start

MATLAB and follow along with each example.

You can enter matrices into MATLAB in several different ways:

• Enter an explicit list of elements.

• Load matrices from external data files.

• Generate matrices using built-in functions.

• Create matrices with your own functions in M-files.

Start by entering Dürer's matrix as a list of its elements. You have only to follow a few basic

conventions:

• Separate the elements of a row with blanks or commas.

• Use a semicolon, ; , to indicate the end of each row.

• Surround the entire list of elements with square brackets, [].

To enter Dürer's matrix, simply type in the Command Window

A = [16 3 2 13; 5 10 11 8; 9 6 7 12; 4 15 14 1]

MATLAB displays the matrix you just entered.

A =

 16 3 2 13

 5 10 11 8

 9 6 7 12

 4 15 14 1

This exactly matches the numbers in the engraving. Once you have entered the matrix, it is

automatically remembered in the MATLAB workspace. You can refer to it simply as A.

18

3.6.2 Expressions

Like most other programming languages, MATLAB provides mathematical expressions, but

unlike most programming languages, these expressions involve entire matrices. The building

blocks of expressions are:

• Variables

• Numbers

• Operators

• Functions

Variables

MATLAB does not require any type declarations or dimension statements. When MATLAB

encounters a new variable name, it automatically creates the variable and allocates the

appropriate amount of storage. If the variable already exists, MATLAB changes its contents

and, if necessary, allocates new storage. For example,

num_students = 25

Creates a 1-by-1 matrix named num_students and stores the value 25 in its single

element. Variable names consist of a letter, followed by any number of letters, digits, or

underscores. MATLAB uses only the first 31 characters of a variable name. MATLAB is

case sensitive; it distinguishes between uppercase and lowercase letters. A and a are not the

same variable. To view the matrix assigned to any variable, simply enter the variable name.

Numbers

MATLAB uses conventional decimal notation, with an optional decimal point and leading

plus or minus sign, for numbers. Scientific notation uses the letter e to specify a power-of-

ten scale factor. Imaginary numbers use either i or j as a suffix. Some examples of legal

numbers are

3 -99 0.0001

9.6397238 1.60210e-20 6.02252e23

1i -3.14159j 3e5i

All numbers are stored internally using the long format specified by the IEEE floating-point

standard. Floating-point numbers have a finite precision of roughly 16 significant decimal

digits and a finite range of roughly 10-308 to 10+308.

19

3.6.3 Operators

Expressions use familiar arithmetic operators and precedence rules.

+ Addition

- Subtraction

* Multiplication

/ Division

\ Left division (described in "Matrices and Linear Algebra" in Using

MATLAB)

^ Power

' Complex conjugate transpose

() Specify evaluation order

 Table 3.1 Arithmetic operators and precedence rules

3.6.4 Functions

MATLAB provides a large number of standard elementary mathematical functions,

including abs, sqrt, exp, and sin. Taking the square root or logarithm of a negative number

is not an error; the appropriate complex result is produced automatically. MATLAB also

provides many more advanced mathematical functions, including Bessel and gamma

functions. Most of these functions accept complex arguments. For a list of the elementary

mathematical functions, type help elfun, For a list of more advanced mathematical and

matrix functions, type help specfun help elmat.

Some of the functions, like sqrt and sin, are built-in. They are part of the MATLAB

core so they are very efficient, but the computational details are not readily accessible. Other

functions, like gamma and sinh, are implemented in M-files. You can see the code and even

modify it if you want. Several special functions provide values of useful constants.

In terms of programming and development, MATLAB allows users to write scripts

to automate tasks and perform repetitive operations. Users can also create custom functions

to perform specific tasks. MATLAB supports object-oriented programming, enabling users

to create classes and objects. Additionally, MATLAB provides tools for creating graphical

20

user interfaces, including buttons, sliders, and menus. MATLAB offers various specialized

toolboxes that provide functions for specific tasks. For example, the Image Processing

Toolbox provides functions for image processing and analysis, while the Signal Processing

Toolbox offers functions for signal processing and analysis.

Pi 3.14159265...

i Imaginary unit, √-1

I Same as i

Eps Floating-point relative precision, 2-52

Realmin Smallest floating-point number, 2-1022

Realmax Largest floating-point number, (2- ε)21023

Inf Infinity

NaN Not-a-number

 Table 3.2 Special functions

3.7 GUI

A graphical user interface (GUI) is a user interface built with graphical objects, such as

buttons, text fields, sliders, and menus. In general, these objects already have meanings to

most computer users. For example, when you move a slider, a value changes; when you

press an OK button, your settings are applied and the dialog box is dismissed. Of course, to

leverage this built-in familiarity, you must be consistent in how you use the various GUI-

building components.

Applications that provide GUIs are generally easier to learn and use since the person

using the application does not need to know what commands are available or how they work.

The action that results from a particular user action can be made clear by the design of the

interface. MATLAB provides various GUI components, including buttons, sliders, menus,

21

lists, tables, and axes. Each component has its own set of properties and methods that you

can use to customize its behavior.

The sections that follow describe how to create GUIs with MATLAB. This includes

laying out the components, programming them to do specific things in response to user

actions, and saving and launching the GUI; in other words, the mechanics of creating GUIs.

This documentation does not attempt to cover the "art" of good user interface design, which

is an entire field unto itself. Topics covered in this section include:

3.7.1 Creating GUIs with GUIDE

 MATLAB implements GUIs as figure windows containing various styles of uicontrol

objects. You must program each object to perform the intended action when activated by the

user of the GUI. In addition, you must be able to save and launch your GUI. All of these

tasks are simplified by GUIDE, MATLAB's graphical user interface development

environment. callback routines (see Creating and Storing the Object Handle Structure for

more information). The M-files provides a way to manage global data (see Managing GUI

Data for more information).

3.7.2 GUI Development Environment

The process of implementing a GUI involves two basic tasks:

• Laying out the GUI components

• Programming the GUI components

GUIDE primarily is a set of layout tools. However, GUIDE also generates an M-file that

contains code to handle the initialization and launching of the GUI. This M-file provides a

framework for the implementation of the callbacks - the functions that execute when users

activate components in the GUI.

The Implementation of a GUI

While it is possible to write an M-file that contains all the commands to lay out a GUI, it is

easier to use GUIDE to lay out the components interactively and to generate two files that

save and launch the GUI:

A FIG-file - contains a complete description of the GUI figure and all of its children

(uicontrols and axes), as well as the values of all object properties.

An M-file - contains the functions that launch and control the GUI and the callbacks, which

are defined as subfunctions. This M-file is referred to as the

22

application M-file in this documentation.

Note that the application M-file does not contain the code that lays out the uicontrols; this

information is saved in the FIG-file.

The following diagram illustrates the parts of a GUI implementation.

 Fig 3.2 Graphical user blocks

3.7.3 Features of the GUIDE-Generated Application M-File

GUIDE simplifies the creation of GUI applications by automatically generating an M-file

framework directly from your layout. You can then use this framework to code your

application M-file. This approach provides a number of advantages:

The M-file contains code to implement a number of useful features (see Configuring

Application Options for information on these features). The M-file adopts an effective

approach to managing object handles and executing callback routines (see Creating and

Storing the Object Handle Structure for more information). The M-files provides a way to

manage global data (see Managing GUI Data for more information).

The automatically inserted subfunction prototypes for callbacks ensure compatibility with

future releases. For more information, see Generating Callback Function Prototypes for

information on syntax and arguments.

You can elect to have GUIDE generate only the FIG-file and write the application

M-file yourself. Keep in mind that there are no uicontrol creation commands in the

23

application M-file; the layout information is contained in the FIG-file generated by the

Layout Editor. The M-files provides a way to manage global data.

3.7.4 Beginning the Implementation Process

To begin implementing your GUI, proceed to the following sections:

Getting Started with GUIDE - the basics of using GUIDE.

Selecting GUIDE Application Options - set both FIG-file and M-file options.

Using the Layout Editor - begin laying out the GUI.

Understanding the Application M-File - discussion of programming techniques

used in the application M-file.

Application Examples - a collection of examples that illustrate techniques

which are useful for implementing GUIs.

Command-Line Accessibility

When MATLAB creates a graph, the figure and axes are included in the list of children of

their respective parents and their handles are available through commands such as findobj,

set, and get. If you issue another plotting command, the output is directed to the current

figure and axes. GUIs are also created in figure windows. Generally, you do not want GUI

figures to be available as targets for graphics output, since issuing a plotting command could

direct the output to the GUI figure, resulting in the graph appearing in the middle of the GUI.

In contrast, if you create a GUI that contains an axes and you want commands entered in the

command window to display in this axes, you should enable command-line access.

3.7.5 User Interface Controls

The Layout Editor component palette contains the user interface controls that you can use

in your GUI. These components are MATLAB uicontrol objects and are programmable via

their Callback properties. This section provides information on these components.

➢ Push Buttons

➢ Sliders

➢ Toggle Buttons

➢ Frames

➢ Radio Buttons

➢ List boxes

➢ Checkboxes

➢ Popup Menus

24

➢ Edit Text

➢ Axes

➢ Static Text

➢ Figures

• Push Buttons

Push buttons generate an action when pressed (e.g., an OK button may close a dialog box

and apply settings). When you click down on a push button, it appears depressed; when you

release the mouse, the button's appearance returns to its nondepressed state; and its callback

executes on the button up event.

Properties to Set

String - set this property to the character string you want displayed on the push button.

Tag - GUIDE uses the Tag property to name the callback subfunction in the application M-

file. Set Tag to a descriptive name (e.g., close_button) before activating the GUI.

Programming the Callback

 When the user clicks on the push button, its callback executes. Push buttons do not return a

value or maintain a state.

• Toggle Buttons

Toggle buttons generate an action and indicate a binary state (e.g., on or off). When you

click on a toggle button, it appears depressed and remains depressed when you release the

mouse button, at which point the callback executes. A subsequent mouse click returns the

toggle button to the nondepressed state and again executes its callback.

Programming the Callback

The callback routine needs to query the toggle button to determine what state it is in.

MATLAB sets the Value property equal to the Max property when the toggle button is

depressed (Max is 1 by default) and equal to the Min property when the toggle button is not

depressed (Min is 0 by default).

From the GUIDE Application M-File

The following code illustrates how to program the callback in the GUIDE application M-

file.

function varargout = togglebutton1_Callback(h,eventdata,handles,varargin)

button_state = get(h,'Value');

25

if button_state == get(h,'Max')

% toggle button is pressed

elseif button_state == get(h,'Min')

% toggle button is not pressed

End

Adding an Image to a Push Button or Toggle Button

Assign the CData property an m-by-n-by-3 array of RGB values that define a truecolor

image. For example, the array a defines 16-by-128 truecolor image using random values

between 0 and 1 (generated by rand).

a(:,:,1) = rand(16,128);

a(:,:,2) = rand(16,128);

a(:,:,3) = rand(16,128);

set(h,'CData',a)

• Radio Buttons

Radio buttons are similar to checkboxes, but are intended to be mutually exclusive within a

group of related radio buttons (i.e., only one button is in a selected state at any given time).

To activate a radio button, click the mouse button on the object. The display indicates the

state of the button.

Implementing Mutually Exclusive Behavior

Radio buttons have two states - selected and not selected. You can query and set the state of

a radio button through its Value property:

Value = Max, button is selected.

Value = Min, button is not selected.

To make radio buttons mutually exclusive within a group, the callback for each radio button

must set the Value property to 0 on all other radio buttons in the group. MATLAB sets the

Value property to 1 on the radio button clicked by the user.

 The following subfunction, when added to the application M-file, can be called by

each radio button callback. The argument is an array containing the handles of all other radio

buttons in the group that must be deselected.

function mutual_exclude(off)

set(off,'Value',0)

26

Obtaining the Radio Button Handles.

The handles of the radio buttons are available from the handles structure, which contains the

handles of all components in the GUI. This structure is an input argument to all radio button

callbacks.

The following code shows the call to mutual exclude being made from the first radio button's

callback in a group of four radio buttons.

function varargout = radiobutton1_Callback(h,eventdata,handles,varargin)

off = [handles.radiobutton2,handles.radiobutton3,handles.radiobutton4];

mutual_exclude(off)

% Continue with callback

 .

 .

 After setting the radio buttons to the appropriate state, the callback can continue with its

implementation-specific tasks.

• Checkboxes

Check boxes generate an action when clicked and indicate their state as checked or not

checked. Check boxes are useful when providing the user with a number of independent of

choices that set a mode (e.g., display a toolbar or generate callback function prototypes).

The Value property indicates the state of the check box by taking on the value of the Max or

Min property (1 and 0 respectively by default):

Value = Max, box is checked.

Value = Min, box is not checked.

You can determine the current state of a check box from within its callback by querying the

state of its Value property, as illustrated in the following example:

function checkbox1_Callback(h,eventdata,handles,varargin)

if (get(h,'Value') == get(h,'Max'))

% then checkbox is checked-take approriate action

else

% checkbox is not checked-take approriate action

End

When a check box is clicked, it generates an action and indicates its state as checked or not

checked. Check boxes are useful when providing users with independent choices.

27

• Edit Text

Edit text controls are fields that enable users to enter or modify text strings. Use edit text

when you want text as input. The String property contains the text entered by the user.

To obtain the string typed by the user, get the String property in the callback.

function edittext1Callback(h,eventdata, handles,varargin)

user_string = get(h,'string');

% proceed with callback...

Obtaining Numeric Data from an Edit Test Component

MATLAB returns the value of the edit text String property as a character string. If you want

users to enter numeric values, you must convert the characters to numbers. You can do this

using the str2double command, which converts strings to doubles. If the user enters non-

numeric characters, str2double returns NaN.

You can use the following code in the edit text callback. It gets the value of the String

property and converts it to a double. It then checks if the converted value is NaN, indicating

the user entered a non-numeric character (isnan) and displays an error dialog (errordlg).

function edittext1_Callback(h,eventdata,handles,varargin)

user_entry = str2double(get(h,'string'));

if isnan(user_entry)

errordlg('You must enter a numeric value','Bad Input','modal')

end

% proceed with callback...

Triggering Callback Execution

On UNIX systems, clicking on the menubar of the figure window causes the edit text

callback to execute. However, on Microsoft Windows systems, if an editable text box has

focus, clicking on the menubar does not cause the editable text callback routine to execute.

This behavior is consistent with the respective platform conventions. Clicking on other

components in the GUI execute the callback.

• Static Text

Static text controls displays lines of text. Static text is typically used to label other controls,

provide directions to the user, or indicate values associated with a slider. Users cannot

change static text interactively and there is no way to invoke the callback routine associated

with it.

28

• Frames

Frames are boxes that enclose regions of a figure window. Frames can make a user interface

easier to understand by visually grouping related controls. Frames have no callback routines

associated with them and only uicontrols can appear within frames (axes cannot).

Placing Components on Top of Frames

Frames are opaque. If you add a frame after adding components that you want to be

positioned within the frame, you need to bring forward those components. Use the Bring to

Front and Send to Back operations in the Layout menu for this purpose.

• List Boxes

List boxes display a list of items and enable users to select one or more items. The String

property contains the list of strings displayed in the list box. The first item in the list has an

index of 1.

The Value property contains the index into the list of strings that correspond to the

selected item. If the user selects multiple items, then Value is a vector of indices. By default,

the first item in the list is highlighted when the list box is first displayed. If you do not want

any item highlighted, then set the Value property to empty, []. The ListboxTop property

defines which string in the list displays as the top most item when the list box is not large

enough to display all list entries. ListboxTop is an index into the array of strings defined by

the String property and must have a value between 1 and the number of strings. Noninteger

values are fixed to the next lowest integer.

Single or Multiple Selection

The values of the Min and Max properties determine whether users can make single or

multiple selections:

If Max - Min > 1, then list boxes allow multiple item selection.

If Max - Min <= 1, then list boxes do not allow multiple item selection.

Selection Type

Listboxes differentiate between single and double clicks on an item and set the figure

SelectionType property to normal or open accordingly. See Triggering Callback Execution

for information on how to program multiple selection. When using check boxes in GUI

design, there are several best practices to keep in mind. First, use check boxes for

independent options that don't affect each other.

29

Triggering Callback Execution

MATLAB evaluates the list box's callback after the mouse button is released or a keypress

event (including arrow keys) that changes the Value property (i.e., any time the user clicks

on an item, but not when clicking on the list box scrollbar). This means the callback is

executed after the first click of a double-click on a single item or when the user is making

multiple selections.

In these situations, you need to add another component, such as a Done button (push

button) and program its callback routine to query the list box Value property (and possibly

the figure SelectionType property) instead of creating a callback for the list box. If you are

using the automatically generated application M-file option, you need to either:

Set the list box Callback property to the empty string ('') and remove the callback

subfunction from the application M-file. Leave the callback subfunction stub in the

application M-file so that no code executes when users click on list box items.

The first choice is best if you are sure you will not use the list box callback and you

want to minimize the size and efficiency of the application M-file. However, if you think

you may want to define a callback for the list box at some time, it is simpler to leave the

callback stub in the M-file.

Popup Menus

Popup menus open to display a list of choices when users press the arrow. The string property

contains the list of string displayed in the popup menu. The Value property contains the

index into the list of strings that correspond to the selected item. When not open, a popup

menu displays the current choice, which is determined by the index contained in the Value

property. The first item in the list has an index of 1. Popup menus are useful when you want

to provide users with a number of mutually exclusive choices, but do not want to take up the

amount of space that a series of radio buttons requires.

Programming the Popup Menu

You can program the popup menu callback to work by checking only the index of the item

selected (contained in the Value property) or you can obtain the actual string contained in

the selected item. This callback checks the index of the selected item and uses a switch

statement to take action based on the value. If the contents of the popup menu is fixed, then

you can use this approach.

30

function varargout = popupmenu1_Callback(h,eventdata,handles,varargin)

val = get(h,'Value');

switch val

case 1

% The user selected the first item

case 2

% The user selected the second item

% etc.

This callback obtains the actual string selected in the popup menu. It uses the value to index

into the list of strings. This approach may be useful if your program dynamically loads the

contents of the popup menu based on user action and you need to obtain the selected string.

Note that it is necessary to convert the value returned by the String property from a cell array

to a string.

function varargout = popupmenu1_Callback(h,eventdata,handles,varargin)

val = get(h,'Value');

string_list = get(h,'String');

selected_string = string_list{val}; % convert from cell array to string

% etc.

Enabling or Disabling Controls

You can control whether a control responds to mouse button clicks by setting the Enable

property. Controls have three states:

on - The control is operational

off - The control is disabled and its label (set by the string property) is

grayed out.

inactive - The control is disabled, but its label is not grayed out.

When a control is disabled, clicking on it with the left mouse button does not execute its

callback routine. However, the left-click causes two other callback routines to execute:

First the figure WindowButtonDownFcn callback executes. Then the control's

ButtonDownFcn callback executes. A right mouse button click on a disabled control posts a

context menu, if one is defined for that control.

See the Enable property description for more details. Disabling a GUI component

means making it inactive and unavailable for user interaction. When a component is

31

disabled, it cannot be clicked, edited, or selected. Enabling and disabling are two important

concepts in MATLAB GUI that allow you to control the behavior of GUI components.

• Axes

Axes enable your GUI to display graphics (e.g., graphs and images). Like all graphics

objects, axes have properties that you can set to control many aspects of its behavior and

appearance. See Axes Properties for general information on axes objects.

Axes Callbacks

Axes are not uicontrol objects, but can be programmed to execute a callback when users

click a mouse button in the axes. Use the axes ButtonDownFcn property to define the

callback.

Plotting to Axes in GUIs

GUIs that contain axes should ensure the Command-line accessibility option in the

Application Options dialog is set to Callback (the default). This enables you to issue plotting

commands from callbacks without explicitly specifying the target axes.

GUIs with Multiple Axes

If a GUI has multiple axes, you should explicitly specify which axes you want to target when

you issue plotting commands. You can do this using the axes command and the handles

structure. For example,

axes(handles.axes1)

makes the axes whose Tag property is axes1 the current axes, and therefore the target for

plotting commands. You can switch the current axes whenever you want to target a different

axes. See GUI with Multiple Axes for and example that uses two axes. This enables you to

issue plotting commands from callbacks without explicitly specifying the target axes. A GUI

can contain various components, such as buttons, sliders, and axes. This enables you to issue

plotting commands from callbacks without explicitly specifying the target axes.

• Figure

Figures are the windows that contain the GUI you design with the Layout Editor. See the

description of figure properties for information on what figure characteristics you can

control.

32

3.8 INTRODUCTION TO IMAGE PROCESSING

3.8.1 IMAGE:

An image is a two-dimensional picture, which has a similar appearance to some subject

usually a physical object or a person. Image is a two-dimensional, such as a photograph,

screen display, and as well as a three-dimensional, such as a statue. They may be captured

by optical devices—such as cameras, mirrors, lenses, telescopes, microscopes, etc. and

natural objects and phenomena, such as the human eye or water surfaces.

The word image is also used in the broader sense of any two-dimensional figure such

as a map, a graph, a pie chart, or an abstract painting. In this wider sense, images can also

be rendered manually, such as by drawing, painting, carving, rendered automatically by

printing or computer graphics technology, or developed by a combination of methods,

especially in a pseudo-photograph.

 Fig 3.3 General image

An image is a rectangular grid of pixels. It has a definite height and a definite width

counted in pixels. Each pixel is square and has a fixed size on a given display. However

different computer monitors may use different sized pixels. The pixels that constitute an

image are ordered as a grid (columns and rows); each pixel consists of numbers representing

magnitudes of brightness and color.

33

 Fig 3.4 Image pixel

Each pixel has a color. The color is a 32-bit integer. The first eight bits determine the redness

of the pixel, the next eight bits the greenness, the next eight bits the blueness, and the

remaining eight bits the transparency of the pixel.

 Fig 3.5 Transparency image

3.8.2 IMAGE FILE SIZES:

Image file size is expressed as the number of bytes that increases with the number of pixels

composing an image, and the color depth of the pixels. The greater the number of rows and

columns, the greater the image resolution, and the larger the file. Also, each pixel of an

image increases in size when its color depth increases, an 8-bit pixel (1 byte) stores 256

colors, a 24-bit pixel (3 bytes) stores 16 million colors, the latter known as true color.

Image compression uses algorithms to decrease the size of a file. High resolution

cameras produce large image files, ranging from hundreds of kilobytes to megabytes, per

the camera's resolution and the image-storage format capacity. High resolution digital

cameras record 12 megapixel (1MP = 1,000,000 pixels / 1 million) images, or more, in true

34

color. For example, an image recorded by a 12 MP camera; since each pixel uses 3 bytes to

record true color, the uncompressed image would occupy 36,000,000 bytes of memory, a

great amount of digital storage for one image, given that cameras must record and store

many images to be practical. Faced with large file sizes, both within the camera and a storage

disc, image file formats were developed to store such large images.

3.8.3 IMAGE FILE FORMATS:

Image file formats are standardized means of organizing and storing images. This entry is

about digital image formats used to store photographic and other images. Image files are

composed of either pixel or vector (geometric) data that are rasterized to pixels when

displayed (with few exceptions) in a vector graphic display. Including proprietary types,

there are hundreds of image file types. The PNG, JPEG, and GIF formats are most often

used to display images on the Internet.

 Fig 3.6 Resolution image

In addition to straight image formats, Metafile formats are portable formats which

can include both raster and vector information. The metafile format is an intermediate

format. Most Windows applications open metafiles and then save them in their own native

format.

RASTER FORMATS:

These formats store images as bitmaps (also known as pixmaps).

• JPEG/JFIF:

JPEG (Joint Photographic Experts Group) is a compression method. JPEG compressed

images are usually stored in the JFIF (JPEG File Interchange Format) file format. JPEG

compression is lossy compression. Nearly every digital camera can save images in the

JPEG/JFIF format, which supports 8 bits per color (red, green, blue) for a 24-bit total,

producing relatively small files. Photographic images may be better stored in a lossless non-

35

JPEG format if they will be re-edited, or if small "artifacts" are unacceptable. The JPEG/JFIF

format also is used as the image compression algorithm in many Adobe PDF files.

• EXIF:

The EXIF (Exchangeable image file format) format is a file standard similar to the JFIF

format with TIFF extensions. It is incorporated in the JPEG writing software used in most

cameras. Its purpose is to record and to standardize the exchange of images with image

metadata between digital cameras and editing and viewing software. The metadata are

recorded for individual images and include such things as camera settings, time and date,

shutter speed, exposure, image size, compression, name of camera, color information, etc.

When images are viewed or edited by image editing software, all of this image information

can be displayed.

• TIFF:

The TIFF (Tagged Image File Format) format is a flexible format that normally saves 8 bits

or 16 bits per color (red, green, blue) for 24-bit and 48-bit totals, respectively, usually using

either the TIFF or TIF filename extension. TIFFs are lossy and lossless. Some offer relatively

good lossless compression for bi-level (black & white) images. Some digital cameras can

save in TIFF format, using the LZW compression algorithm for lossless storage. TIFF image

format is not widely supported by web browsers. TIFF remains widely accepted as a

photograph file standard in the printing business. TIFF can handle device-specific color

spaces, such as the CMYK defined by a particular set of printing press inks.

• PNG:

The PNG (Portable Network Graphics) file format was created as the free, open-source

successor to the GIF. The PNG file format supports true color (16 million colors) while the

GIF supports only 256 colors. The PNG file excels when the image has large, uniformly

colored areas. The lossless PNG format is best suited for editing pictures, and the lossy

formats, like JPG, are best for the final distribution of photographic images, because JPG

files are smaller than PNG files.

PNG, an extensible file format for the lossless, portable, well-compressed storage of

raster images. PNG provides a patent-free replacement for GIF and can also replace many

common uses of TIFF. Indexed-color, grayscale, and true color images are supported, plus

an optional alpha channel. PNG is designed to work well in online viewing applications,

such as the World Wide Web. PNG is robust, providing both full file integrity checking and

simple detection of common transmission errors.

36

• GIF:

GIF (Graphics Interchange Format) is limited to an 8-bit palette, or 256 colors. This makes

the GIF format suitable for storing graphics with relatively few colors such as simple

diagrams, shapes, logos and cartoon style images. The GIF format supports animation and

is still widely used to provide image animation effects. It also uses a lossless compression

that is more effective when large areas have a single color, and ineffective for detailed

images or dithered images.

• BMP:

The BMP file format (Windows bitmap) handles graphics files within the Microsoft

Windows OS. Typically, BMP files are uncompressed, hence they are large. The advantage

is their simplicity and wide acceptance in Windows programs.

VECTOR FORMATS:

As opposed to the raster image formats above (where the data describes the characteristics

of each individual pixel), vector image formats contain a geometric description which can

be rendered smoothly at any desired display size.

At some point, all vector graphics must be rasterized in order to be displayed on digital

monitors. However, vector images can be displayed with analog CRT technology such as

that used in some electronic test equipment, medical monitors, radar displays, laser shows

and early video games. Plotters are printers that use vector data rather than pixel data to draw

graphics.

• CGM:

CGM (Computer Graphics Metafile) is a file format for 2D vector graphics, raster graphics,

and text. All graphical elements can be specified in a textual source file that can be compiled

into a binary file or one of two text representations. CGM provides a means of graphics data

interchange for computer representation of 2D graphical information independent from any

particular application, system, platform, or device.

• SVG:

SVG (Scalable Vector Graphics) is an open standard created and developed by the World

Wide Web Consortium to address the need for a versatile, scriptable and all purpose vector

format for the web and otherwise. The SVG format does not have a compression scheme of

its own, but due to the textual nature of XML, an SVG graphic can be compressed using a

program such as gzip.

37

3.8.4 IMAGE PROCESSING:

Digital image processing, the manipulation of images by computer, is relatively recent

development in terms of man’s ancient fascination with visual stimuli. In its short history, it

has been applied to practically every type of images with varying degree of success. The

inherent subjective appeal of pictorial displays attracts perhaps a disproportionate amount

of attention from the scientists and also from the layman.

Digital image processing like other glamour fields, suffers from myths, mis-connect

ions, mis-understandings and mis-information. It is vast umbrella under which fall diverse

aspect of optics, electronics, mathematics, photography graphics and computer technology.

It is truly multidisciplinary endeavor ploughed with imprecise jargon.

Several factor combine to indicate a lively future for digital image processing. A

major factor is the declining cost of computer equipment. Several new technological trends

promise to further promote digital image processing. These include parallel processing mode

practical by low cost microprocessors, and the use of charge coupled devices (CCDs) for

digitizing, storage during processing and display and large low cost of image storage arrays.

FUNDAMENTAL STEPS IN DIGITAL IMAGE PROCESSING:

 Fig 3.7 Fundamental steps in Digital Image Processing

38

• Image Acquisition:

Image Acquisition is to acquire a digital image. To do so requires an image sensor and the

capability to digitize the signal produced by the sensor. The sensor could be monochrome or

color TV camera that produces an entire image of the problem domain every 1/30 sec. the

image sensor could also be line scan camera that produces a single image line at a time. In

this case, the objects motion past the line.

 Fig 3.7.1 Acquisation of Image

Scanner produces a two-dimensional image. If the output of the camera or other

imaging sensor is not in digital form, an analog to digital converter digitizes it. The nature

of the sensor and the image it produces are determined by the application.

• Image Enhancement:

Image enhancement is among the simplest and most appealing areas of digital image

processing. Basically, the idea behind enhancement techniques is to bring out detail that is

obscured, or simply to highlight certain features of interesting an image. A familiar example

of enhancement is when we increase the contrast of an image because “it looks better.” It is

important to keep in mind that enhancement is a very subjective area of image processing.

 Fig 3.7.2 Enhancement of image

39

• Image restoration:

Image restoration is an area that also deals with improving the appearance of an image.

However, unlike enhancement, which is subjective, image restoration is objective, in the

sense that restoration techniques tend to be based on mathematical or probabilistic models

of image degradation. Enhancement, on the other hand, is based on human subjective

preferences regarding what constitutes a “good” enhancement result. For example, contrast

stretching is considered an enhancement technique because it is based primarily on the

pleasing aspects it might present to the viewer, where as removal of image blur by applying

a deblurring function is considered a restoration technique.

 Fig 3.7.3 Restoration of Image

• Color image processing:

The use of color in image processing is motivated by two principal factors. First, color is a

powerful descriptor that often simplifies object identification and extraction from a scene.

Second, humans can discern thousands of color shades and intensities, compared to about

only two dozen shades of gray. This second factor is particularly important in manual image

analysis.

 Fig 3.7.4 color image

40

• Wavelets and multiresolution processing:

Wavelets are the formation for representing images in various degrees of resolution.

Although the Fourier transform has been the mainstay of transform based image processing

since the late1950’s, a more recent transformation, called the wavelet transform, and is now

making it even easier to compress, transmit, and analyze many images. Unlike the Fourier

transform, whose basis functions are sinusoids, wavelet transforms are based on small

values, called Wavelets, of varying frequency and limited duration.

 Fig 3.7.5 Wavelets

Wavelets were first shown to be the foundation of a powerful new approach to signal

processing and analysis called Multiresolution theory. Multiresolution theory incorporates

and unifies techniques from a variety of disciplines, including sub band coding from signal

processing, quadrature mirror filtering from digital speech recognition, and pyramidal image

processing.

• Compression:

Compression, as the name implies, deals with techniques for reducing the storage required

saving an image, or the bandwidth required for transmitting it. Although storage technology

has improved significantly over the past decade, the same cannot be said for transmission

capacity. This is true particularly in uses of the Internet, which are characterized by

significant pictorial content. Image compression is familiar to most users of computers in

the form of image file extensions, such as the jpg file extension used in the JPEG (Joint

Photographic Experts Group) image compression standard.

41

• Morphological processing:

Morphological processing deals with tools for extracting image components that are useful

in the representation and description of shape. The language of mathematical morphology is

set theory. As such, morphology offers a unified and powerful approach to numerous image

processing problems. Sets in mathematical morphology represent objects in an image. For

example, the set of all black pixels in a binary image is a complete morphological description

of the image. In binary images, the sets in question are members of the 2-D integer space

Z2, where each element of a set is a 2-D vector whose coordinates are the (x,y) coordinates

of a black(or white) pixel in the image.

 Fig 3.7.6 Binary Image

Gray-scale digital images can be represented as sets whose components are in Z3. In

this case, two components of each element of the set refer to the coordinates of a pixel, and

the third corresponds to its discrete gray-level value.

• Segmentation:

Segmentation procedures partition an image into its constituent parts or objects. In general,

autonomous segmentation is one of the most difficult tasks in digital image processing. A

rugged segmentation procedure brings the process a long way toward successful solution of

imaging problems that require objects to be identified individually.

 Fig 3.7.7 Segmentation of Image

On the other hand, weak or erratic segmentation algorithms almost always guarantee

eventual failure. In general, the more accurate the segmentation, the more likely recognition

is to succeed.

42

• Representation and description:

 Representation and description almost always follow the output of a segmentation stage,

which usually is raw pixel data, constituting either the boundary of a region (i.e., the set of

pixels separating one image region from another) or all the points in the region itself. In

either case, converting the data to a form suitable for computer processing is necessary. The

first decision that must be made is whether the data should be represented as a boundary or

as a complete region. Boundary representation is appropriate when the focus is on external

shape characteristics, such as corners and inflections.

Regional representation is appropriate when the focus is on internal properties, such

as texture or skeletal shape. In some applications, these representations complement each

other. Choosing a representation is only part of the solution for transforming raw data into a

form suitable for subsequent computer processing.

A method must also be specified for describing the data so that features of interest

are highlighted. Description, also called feature selection, deals with extracting attributes

that result in some quantitative information of interest or are basic for differentiating one

class of objects from another.

• Object recognition:

The last stage involves recognition and interpretation. Recognition is the process that assigns

a label to an object based on the information provided by its descriptors. Interpretation

involves assigning meaning to an ensemble of recognized objects.

• Knowledgebase:

Knowledge about a problem domain is coded into image processing system in the form of a

knowledge database. This knowledge may be as simple as detailing regions of an image

when the information of interests is known to be located, thus limiting the search that has to

be conducted in seeking that information. The knowledge base also can be quite complex,

such as an inter related to list of all major possible defects in a materials inspection problem

or an image data base containing high resolution satellite images of a region in connection

with change deletion application.

In addition to guiding the operation of each processing module, the knowledge base also

controls the interaction between modules. The system must be endowed with the knowledge

to recognize the significance of the location of the string with respect to other components

43

of an address field. This knowledge glides not only the operation of each module, but it also

aids in feedback operations between modules through the knowledge base. We implemented

preprocessing techniques using MATLAB.

COMPONENTS OF AN IMAGE PROCESSING SYSTEM:

As recently as the mid-1980s, numerous models of image processing systems being sold

throughout the world were rather substantial peripheral devices that attached to equally

substantial host computers. Late in the 1980s and early in the 1990s, the market shifted to

image processing hardware in the form of single boards designed to be compatible with

industry standard buses and to fit into engineering workstation cabinets and personal

computers. In addition to lowering costs, this market shift also served as a catalyst for a

significant number of new companies whose specialty is the development of software

written specifically for image processing.

Although large-scale image processing systems still are being sold for massive

imaging applications, such as processing of satellite images, the trend continues toward

miniaturizing and blending of general-purpose small computers with specialized image

processing hardware. Figure 1.24 shows the basic components comprising a typical general-

purpose system used for digital image processing. The function of each component is

discussed in the following paragraphs, starting with image sensing.

 Fig 3.8 Components of An Image Processing System

44

• Image sensors:

With reference to sensing, two elements are required to acquire digital images. The first is a

physical device that is sensitive to the energy radiated by the object we wish to image. The

second, called a digitizer, is a device for converting the output of the physical sensing device

into digital form. For instance, in a digital video camera, the sensors produce an electrical

output proportional to light intensity. The digitizer converts these outputs to digital data.

• Specialized image processing hardware:

Specialized image processing hardware usually consists of the digitizer just mentioned, plus

hardware that performs other primitive operations, such as an arithmetic logic unit (ALU),

which performs arithmetic and logical operations in parallel on entire images. One example

of how an ALU is used is in averaging images as quickly as they are digitized, for the purpose

of noise reduction. This type of hardware sometimes is called a front-end subsystem, and its

most distinguishing characteristic is speed. In other words, this unit performs functions that

require fast data throughputs (e.g., digitizing and averaging video images at 30 frames) that

the typical main computer cannot handle.

• Computer:

The computer in an image processing system is a general-purpose computer and can range

from a PC to a supercomputer. In dedicated applications, sometimes specially designed

computers are used to achieve a required level of performance, but our interest here is on

general-purpose image processing systems. In these systems, almost any well-equipped PC-

type machine is suitable for offline image processing tasks.

• Image processing software:

Software for image processing consists of specialized modules that perform specific tasks.

A well-designed package also includes the capability for the user to write code that, as a

minimum, utilizes the specialized modules. More sophisticated software packages allow the

integration of those modules and general-purpose software commands from at least one

computer language.

• Mass storage:

Mass storage capability is a must in image processing applications. An image of size

1024*1024 pixels, in which the intensity of each pixel is an 8-bit quantity, requires one

megabyte of storage space if the image is not compressed. When dealing with thousands, or

even millions, of images, providing adequate storage in an image processing system can be

a challenge. Digital storage for image processing applications fall into three principal

45

categories: (1) short-term storage for use during processing, (2) on-line storage for relatively

fast recall, and (3) archival storage, characterized by infrequent access. Storage is

measuredin bytes (eight bits), Kbytes (one thousand bytes), Mbytes (one million bytes),

Gbytes (meaning giga, or one billion, bytes), and Tbytes (meaning tera, or one trillion,

bytes).

One method of providing short-term storage is computer memory. Another is by

specialized boards, called frame buffers that store one or more images and can be accessed

rapidly, usually at video rates. The latter method allows virtually instantaneous image zoom,

as well as scroll (vertical shifts) and pan (horizontal shifts). Frame buffers usually are housed

in the specialized image processing hardware unit shown in Fig. 1.24. Online storage

generally takes the form of magnetic disks or optical-media storage. The key factor

characterizing on-line storage is frequent access to the stored data. Finally, archival storage

is characterized by massive storage requirements but infrequent need for access. Magnetic

tapes and optical disks housed in “jukeboxes” are the usual media for archival applications.

• Image displays:

Image displays in use today are mainly color (preferably flat screen) TV monitors. Monitors

are driven by the outputs of image and graphics display cards that are an integral part of the

computer system. Seldom are there requirements for image display applications that cannot

be met by display cards available commercially as part of the computer system. In some

cases, it is necessary to have stereo displays, and these are implemented in the form of

headgear containing two small displays embedded in goggles worn by the user.

• Hard Copy:

Hardcopy devices for recording images include laser printers, film cameras, heat-sensitive

devices, inkjet units, and digital units, such as optical and CD-ROM disks. Film provides

the highest possible resolution, but paper is the obvious medium of choice for written

material. For presentations, images are displayed on film transparencies or in a digital

medium if image projection equipment is used. The latter approach is gaining acceptance as

the standard for image presentations.

• Network:

Networking is almost a default function in any computer system in use today. Because of

the large amount of data inherent in image processing applications, the key consideration in

image transmission is bandwidth. In dedicated networks, this typically is not a problem, but

communications with remote sites via the Internet are not always as efficient.

46

 CHAPTER 4

 EXISTING SYSTEM

The Scanning laser polarimetry devices provide a number of software-generated parameters,

the main ones being the software generated parameters as ‘the number’ and the ‘NFI’ (nerve

fiber indicator). Reports have shown that GDx software generated parameters have limited

ability for AMD detection. Several other approaches for the analysis of the scan data

available through these devices have been presented to improve upon these results. Locally

based techniques like relative surface height, and sectoral-based analysis have been reported

with better results than GDx parameters. One approach proposed a linear discriminant

function combining GDx parameters and found better result than the ‘number’.16 Another

approach proposed discriminant analysis of 300 sectoral data from the scanning laser

polarimetry. A lot of proposed techniques use the data obtained from a circular ring band

around the center of the optic disc in the scan data. The inner radius of the ring is taken to

be 1.75 times the disc diameter.

A double hump pattern has been reported to exist in the one-dimensional data thus

obtained. Most of the algorithms analyze the changes in the double hump pattern using

different techniques. In some more robust approaches the global shape analysis of the double

hump curve has been suggested and found to better in identifying AMD patients. These

techniques include Fourier analysis suggested with different number of sampling as well as

different combinations of the Fourier analysis components.19-22 Wavelet-Fourier analysis of

the one-dimensional data has also been proposed and shown to have better identification

power as compared with the ‘number’.

The techniques used currently for the analysis of the scan data from the Scanning

laser polarimetry devices have chiefly depended on the ring data around the optic disc center.

The scan is divided into four sectors known as the Temporal, Superior, Nasal, and Inferior

and hence the data obtained from the ring around the optic disc is called the TSNIT graph.

 Although these data provide considerable amount of information for AMD

recognition, the information in the rest of the scanned image must not be completely

neglected. In order to further improve the performance of the classifier, Fourier analysis of

the data obtained using the entire region of the scan as well as analysis of the two

dimensional Fourier transforms of the scan is proposed.

47

This thesis presents a unique approach to the analysis of data from scanning laser

polarimetry devices by using the entire data in the retinal scan data as an image to generate

useful feature vectors. Techniques like taking different angular projections (Radon

Transform) of the image (scan data), 2D Fourier Transform and correlation of the scan

images with observed pattern images are proposed.

Chapter two provides a brief description and discussion of the disease in question.

The third chapter explains concisely the physics of the scanning laser polarimetry device

used to obtain the data and gives a brief history of the analysis methods previously used for

the scan data. The first phase of the thesis will mainly focus on generation and selection of

the useful features through experimentation on available data. The fourth chapter discusses

the features that were finally chosen to formulate the classification system. After the

selection of final set of features, the feature optimization and final classification steps are

explained and discussed in chapter five.

Once the recognition system is realized, the ROC curve analysis is used for the

performance evaluation of the proposed analysis algorithm and comparison with one of the

previous algorithms using global analysis of the one dimensional ring data are presented in

chapter six. The conclusions are discussed in chapter seven. The appendix has parts of the

code attached for obtaining the discussed features, their PCA analysis, LDF classification as

well as the ROC analysis.

Age-related macular degeneration (AMD)

The term ‘Age-related macular degeneration (AMD)’ refers to a large number of optic nerve

diseases, which is associated with loss of visual activity and can lead to total, irreversible

blindness if left untreated. AMD retinal image optic neuropathy is the second leading cause

of blindness worldwide.

The optic nerve is a cylindrical structure responsible for carrying the visual

information out of the eye towards the brain. Neural fibers, the primary component of the

optic nerve, are composed of about 1.2-1.5 million ganglion cell axons.

These axons originating in the ganglion cell layer of the retina, the innermost layer

of the eye, form the retinal nerve fiber layer (RNFL). These axons collect the visual

information and carry it outside the eye via the optic nerve. The nerve head is the distal

portion of the optic nerve. The retinal nerves converge upon the nerve head from all points

48

of the fundus. The portion of the optic nerve head that is clinically visible by an

ophthalmoscope is known as the optic disc. The optic nerve head is slightly vertically oval

and it is also the site of entry for the retinal vessels. The shape and size of the optic disc is

important in evaluation for AMD diagnosis.

 Figure 4.1 Anatomy of the eye (Courtesy: Handbook of Age-related macular degeneration (AMD)

 (Azuara-Blanco Augusto)

Intraocular Pressure (IOP) is a result of complex interplay of components of the

aqueous humor dynamics in the eye. It describes the pressure in the eye due to production

and flow of optic fluid known as aqueous humor. A ‘normal’ IOP (that does not lead to AMD

retinal image damage) is usually defined as 15.5 +_ 2.5 mmHg while ‘AMD retinal image’

IOP is generally described as above 20.5 mmHg. However, AMD patients are known to have

IOP within the normal range and raised IOP can be found in non-AMD retinal image eyes.

Intraocular pressure is subject to a certain daily variation as well as variation during the same

day24. Normal eyes show less diurnal variation in the IOP than AMD retinal image eyes. The

elevated IOP when beyond that compatible with normal ocular function leads to irreversible

damage to the nerve fibers in the retina, thus causing visual impairment. Intraocular pressure

has a central role in the treatment of all forms of AMD today. It has been considered the

main risk factor for AMD, and almost every treatment for AMD patient is aimed at reducing

the IOP. Although raised IOP is considered a big risk factor for AMD, alone it is insufficient

for the diagnosis of most forms of AMD. It has been associated with only 50% sensitivity

49

and 90% specificity.6 However it still is the primary criterion for making diagnosis for

patients with normal optic nerve heads and normal visual fields as well as in cases of

congenital and secondary AMD. The most widely used and accepted gold standard for

measuring IOP is Goldmann tonometry. Goldmann determined that when an area of 3.06

mm in a human eye is flattened with 520 µm corneal thickness, then resistance of cornea

balances with the surface tension and hence could be ignored. This is the main principle on

which the tonometer is based.

AMD can cause damage to the optic nerve in a variety of ways. It has been proved

that irrespective of the type of damage, the development of visual field defects is always

preceded by optic nerve damage in AMD.8 The appearance of the optic disc is a very

important characteristic to determine AMD retinal image damage. The shape of the optic

disc in a normal eye is round or horizontally oval. The region in the retina around the optic

disc has been divided into four areas, the horizontal sector towards the nose is called the

Nasal region, the other horizontal sector being the Temporal, the vertical sector above the

disc is known as Superior while the sector below is called Inferior (Figure 2.2). The neural

rim around the optic disc is widest in the inferior quadrant, followed by superior, nasal and

temporal.

There are various patterns of optic disc changes in AMD, and the detection of change

is the diagnosis of AMD. The concentric enlargement of the optic cup, notching, and other

similar patterns of AMD retinal image damage are the most commonly found. The optic disc

to optic cup ratio is therefore usually taken into consideration while evaluation. However

the asymmetries of cup/disc can have other diseases as a cause and are therefore not as

reliable. Other features taken into account are the size and shape of

Figure 4.2 Photograph of the optic nerve with optic disc in the center and the areas around it divided

 into the four sectors – Temporal, Superior, Nasal, and Inferior

The rim around the optic disc and the presence of optic disc hemorrhage. To examine

the shape of the optic disc for AMD retinal image changes, ophthalmoscope is generally

used. The direct examination of the optic disc through an ophthalmoscope is called

50

ophthalmoscopy and it can provide useful information for diagnosis of AMD. It is generally

performed in a dark room with dilated pupil. Although doctors can detect a lot of features

through this technique, it does not yield a permanent record and has interobserver and

intraobserver variabilities. Its sensitivity and specificity has been reported to be only 59%

and 73%, respectively.

A careful examination and detection of change in the optic nerve and the nerve fiber

layer is the key to early diagnosis of AMD. There are several instruments currently available

for imaging of optic nerve and the nerve fiber layer, such as red-free photography, the

Topcon ImageNet system, the confocal scanning laser ophthalmoscope, the retinal nerve

fiber layer analyzer, and the optical coherence tomograph. The main disadvantages of these

techniques however, are the lack of adequate amount of research and high cost.

Another very widely used test for AMD is the visual field test. The most common

way to measure how well the optic nerve functions is the assessment of the eye’s ability to

detect the brightness of small points of light both centrally and peripherally. This type of

examination is called visual-field testing or perimetry. Although high sensitivity and

specificity numbers have been reported for this test,5 it depends a lot on the conditions of

the test, momentary or immediate state of the patient and the design of the test. Hence they

need to be augmented by another screening technique for confirmation.

51

 CHAPTER 5

 PROPOSED SYSTEM

5.1 Retinal Nerve Fiber Layer and Scanning Laser Polarimetry

The retinal nerve fiber layer is composed of about 1.2-1.5 million ganglion cell axons

originating in the retina. The axons are distributed in a characteristic pattern. The axons

originating in the region nasal to the optic disc as well as in the macular area run directly

toward the optic nerve head, while the axons originating in the temporal section run towards

the superior or inferior poles of the optic disc before converging to the nerve head. These

fibers are known to be most susceptible to early AMD retinal image damage.

The peripheral ganglion cell axons travel to the optic nerve head in the peripheral

position while the central axons take a more superficial path and follow the innermost part

within the optic nerve head. Due to the characteristic pattern of the nerve fiber layer axons,

the thickness of the nerve fiber layer on the vertical poles of the optic disc is much higher

than in the nasal and temporal optic disc poles.

 The importance of the detection of RNFL damage as an early sign of Age-related

macular degeneration (AMD) has been confirmed by numerous studies. Hoyt and Newman

first described it in 198725,26. Histological studies show that as much as 40% of retinal nerve

fiber in the eye can be lost without the detection of characteristic visual defect in AMD

patients6. The findings of Sommer and colleagues showed that RNFL damage could precede

visual field loss by up to 5 years27. Hence it is believed that the detection of damage in nerve

fiber layer can lead to an early detection of AMD.

RNFL defects related to Age-related macular degeneration (AMD) can be either

diffused or localized. Localized defects generally include slit-like or groove-like defects in

the RNFL. When these slit like defects extend to the disc margin or the wedge shaped defects

are seen as notches in the neuroretinal rim in inferior or superior regions, it is judged as a

sign of AMD retinal image abnormality.

 Although localized defects are easier to detect, diffuse RNFL loss is more common

and difficult to diagnose. The second order retinal vessels, which are normally well

concealed by the retinal nerve fiber layer, start to be seen in this kind of defects. The

progressive loss of RNFL thickness in the superior and inferior poles is a sign of AMD

retinal image damage.

52

There are several different techniques for the qualitative examination and

quantitative measurement of nerve fiber damage caused by AMD. The qualitative techniques

include examination of the retina through a dilated pupil using an ophthalmoscope or by

using a red-free camera or using high-resolution black and white photographs. These are all,

however, limited by the pupil size and media optics and tend to have high intra- and

interobserver variability. To reduce these difficulties and provide more quantitative

measurements of the nerve fiber layer, different devices have been developed. Several

instruments have been developed that focus on imaging of the fundus (a mirror like structure

just behind the retina which acts as a light amplifier) and analyzing the topography of the

retinal surface. These methods attempt to quantify the three-dimensional size and shape of

the optic disc, which is considered to represent the bulk of the retinal nerve fibers (Figure

3.1). Stereoscopic fundus photography uses photographs of fundus under different angles to

obtain topographic information of the disc.

Confocal scanning laser ophthalmoscopy tries to obtain optical section images of the

retina by scanning a laser beam across the eye fundus in two dimensions and provides video

images on a monitor. These methods include instruments like the Topcon Imagenet, the

Rodenstock Optic Nerve Analyzer (Rodenstock Instruments, Munich, Germany) and

Heidelberg Retina Tomograph (Heidelberg Engineering, Heidelberg, Germany). Although

these methods are a reasonable indicator of the condition of the optic disc, the analysis of

the topography of the fundus is an indirect measure of the nerve fiber layer and is only

suggestive. Furthermore, the ultimate resolution of these methods is limited by the properties

of the ocular media. Hence these kinds of imaging systems are not suitable for accurate

measurement of the retinal nerve fiber layer thickness.

Figure 5.1 Example of optic disc photography a) normal disc b) notching in optic disc (Courtesy:

Handbook of Age-related macular degeneration (AMD) (Azuara-Blanco Augusto)

53

Scanning Laser Polarimetry (SLP) is a technique of providing a more quantitative

measure of the thickness of the RNFL. The method is based on the principle of using imaging

polarimetry to detect the birefringence of the retinal nerve fiber layer7,9 (Figure 3.2). This

technique utilizes the polarization properties of the retinal nerve fiber layer. The nerve fiber

layer and other regions of the retina have been known to have polarization properties or

birefringent properties. Form birefringence occurs when a medium consists of parallel

cylindrical structure with diameters smaller than the wavelength of light passing through it.

A birefringent structure has the ability to change the polarization of a polarized light double

passing it29.

 The ganglion axons that constitute the nerve fiber layer are essentially cylindrical

rod-like structures that are parallel to the retinal surface and have extremely small diameters.

When a light beam, perpendicular to its surface, is impinged on the retina, the reflected light

is split into two rays that travel at different velocities. This is due to the birefringence of the

retinal nerve fibers, which being parallel to the retina, are essentially perpendicular to the

scanning laser beam. This delay in the two emerging rays or the phase shift between the two

is known as the retardation. The amount of retardation is found to be dependent on the

thickness of the RNFL due to its properties and it can be measured using a polarimeter. This

retardation (degrees) information is converted to thickness (microns) through the conversion

factor based on the histological comparison with monkey eyes.

Figure 5.2 Scanning Laser Polarimetry Device - Principle (Courtesy: Laser Diagnostics, San Diego, CA)

The Scanning Laser Polarimeter uses this principle to scan the thickness of the retinal

nerve fiber by employing a low power near infrared laser beam to illuminate the human

54

retina. The device using this technology is currently available through Laser Diagnostic

Technologies, Inc, San Diego, CA. The device scans the retina with laser beam and measures

the retardation at 65,536 discrete points within the retinal area of 15o by 15o in less than 1

second. The software application displays this retardation information on a computer screen

as a color-mapped image of the retina (Figure 3.3). A grayscale image of the thickness map

of the same retina is also showed in figure 3.4 for reference. The software also provides

other software generated information and parameters extracted from the thickness map. The

company has generated a normative database using the thickness maps obtained from variety

of patients as well as normal eyes. This is then used to compare the parameters obtained

from current patient to provide the probability of the patient having AMD based on those

parameters. These computer generated parameters include summary measures based on the

calculation circle.

Figure 5.3 Color Coded RNFL thickness map of the 65356 points obtained by the SLP (with the color

 scale on the right).

Among the number of software-generated parameters provided by the company, the

main ones are ‘the number’ and the ‘NFI’ (nerve fiber indicator). The parameter “number”

is obtained through a neural network, which is fed with around 100-200 features from the

scanned image. The NFI is obtained through a support vector machines recognizer and is

available in the newer versions of the device. The latest version of the device implements

the correction for the birefringent properties of the parts of the eye other than the nerve fiber

layer and is called GDx VCC. Currently doctors use the above- mentioned factors from the

device along with other tests and gauge.

 Figure 5.4 Grayscale representation of the RNFL thickness map image

55

CHAPTER 6

 RESULT

6.1 RESULT

 FIG: 6.1 Healthy retina

56

 Fig:6.2 Age-related macular degeneration

Our present sample consists of SLP scans of 92 AMD retinal image eyes and 92 normal

eyes, obtained from 47 Age-related macular degeneration (AMD) patients and 45 healthy

people. Dr. Michael Sinai of Laser Diagnostics made the data set and its diagnosis

(classification based on clinical findings) available to us for research purposes. This set was

divided randomly and uniformly into two subsets. One subset was used as a trainee set for

+the classifier while the other was used as a test set. After the classification results were

obtained, the ROC analysis for performance evaluation.

57

 FIG: 6.3 ROC Curve

 Table 6.1 Performance evaluation of the different feature sets based on the ROC analysis

58

6.2 APPLICATIONS

 Detection and diagnosis of Age-related Macular Degeneration (AMD): Utilizing

computer-assisted imaging technologies to detect structural changes in the retinal nerve fiber

layer for early AMD diagnosis.

 Glaucoma screening and diagnosis: Developing automated systems for glaucoma

detection using image processing and analysis of retinal images.

 Retinal image analysis: Processing retinal images to assist clinical diagnosis and

treatment, with a focus on automated diagnosis of retinal fundus images.

6.3 ADVANTAGES

• It discusses techniques that “aid a physician in detecting possible subtle abnormalities.”

• The application of digital imaging to ophthalmology offers the possibility of processing

retinal images to assist clinical diagnosis and treatment.

• The development of an automated system for analyzing the images of the retina will

facilitate computer-aided diagnosis of eye diseases.

• The automated system can detect glaucoma efficiently and in less time.

59

CHAPTER 7

CONCLUSION & FEATURE SCOPE

7.1 CONCLUSION

Current techniques for analyzing data from Scanning Laser Polarimetry devices primarily

focus on the ring data around the optic disc center. These methods, while informative, may

not utilize all available information within the scan. To improve the performance of

classifiers, it is proposed to use the entire region of the scan to generate more comprehensive

and effective feature vectors.

7.2 FEATURE OPTIMIZATION

The main objective of this step in the classification process is to reduce the dimension of the

feature vector without losing the variability of the feature set. Principal Component analysis

(PCA) identifies linear combinations of the feature set so that most of the variability

(information) of the original feature set is contained within that combination11,12,37. It

essentially transforms a feature vector with correlated variables into a smaller sized feature

vector with uncorrelated variables.

These uncorrelated variables are called the principal components. The first principal

component is the projection of the data points (points in the feature set/ feature vector) in

the direction of the line giving the best orthogonal regression fit to the data points. Since the

best fit to this type should pass through the mean, the data points are centered on the mean

by subtracting the mean from the data points. The first principal component is hence the

projection of the data points into the direction with maximal variance of the projected points.

The first principal component corresponds to the maximum variability of the original feature

set and the second component corresponds to the second highest variability of the set and so

forth, there are p principal components (p is the feature vector size).

The first step in the PCA is to find the sample covariance matrix S, for the combined

samples of both classes. Then the eigenvalues and corresponding eigenvectors of this matrix

are calculated. The combination of the feature points that has the maximum variability is

obtained in the direction of the first principal component and this direction is that of the

eigenvector corresponding to the highest eigenvalues.

60

REFERENCES

[1] J. Kim, M. Kim, H. Kang, and K. H. Lee, “U-gat-it: Unsupervised generative attentional

networks with adaptive layer-instance normalization for image-to-image translation,” in

International Conference on Learning Representations, 2020.

[2] H. Fu, B. Wang, J. Shen, S. Cui, Y. Xu, J. Liu, and L. Shao, “Evaluation of retinal image

quality assessment networks in different color-spaces,” Medical Image Computing and

Computer Assisted Intervention MICCAI 2019, p. 4856, 2019.

[3] H. Zhao, B. Yang, L. Cao, and H. Li, Data-Driven Enhancement of Blurry Retinal Images

via Generative Adversarial Networks, 10 2019, pp. 75–83.

[4] M. Zhou, K. Jin, S. Wang, J. Ye, and D. Qian, “Color retinal image enhancement based

on luminosity and contrast adjustment,” IEEE Transactions on Biomedical Engineering, vol.

65, no. 3, pp. 521–527, 2018.

[5] D. B. Russakoff, A. Lamin, J. Oakley, A. Dubis, and S. Sivaprasad, “Deep learning for

prediction of amd progression: A pilot study.” Investigative ophthalmology and visual

science, vol. 60 2, pp. 712–722, 2019.

[6] G. Bhupendra and M. Tiwari, “Color retinal image enhancement using luminosity and

quantile based contrast enhancement,” Multidimensional Systems and Signal Processing, 01

2019.

[7] M. Zhou, K. Jin, S. Wang, J. Ye, and D. Qian, “Color retinal image enhancement based

on luminosity and contrast adjustment,” IEEE Transactions on Biomedical Engineering, vol.

65, no. 3, pp. 521–527, 2018.

[8] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-toimage translation using

cycle-consistent adversarial networks,” 2017 IEEE International Conference on Computer

Vision (ICCV), Oct 2017.

[9] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi, “Inception-v4, inception-resnet and

the impact of residual connections on learning,” in AAAI, 2017.

[10] P. Dai, H. Sheng, J. Zhang, L. Li, J. Wu, and M. Fan, “Retinal fundus image

enhancement using the normalized convolution and noise removing,” International Journal

of Biomedical Imaging, vol. 2016, pp. 1–12, 01 2016.

[11] X. Huang, M.-Y. Liu, S. Belongie, and J. Kautz, “Multimodal unsupervised image-to-

image translation,” Lecture Notes in Computer Science, p. 179196, 2018.

[12] Y. Peng, S. Dharssi, Q. Chen, T. Keenan, E. Agrn, W. Wong, E. Chew, and Z. lu,

“Deepseenet: A deep learning model for automated classification of patient-based age-

61

related macular degeneration severity from color fundus photographs,” Ophthalmology, vol.

126, 11 2018.

[13] Tjon-Fo, MJ Sang, HG Lemij, The sensitivity and specificity of nerve fiber layer

measurements in Age-related macular degeneration (AMD) as determined with scanning

laser polarimetry, Am J Ophthalmology, 1997; 123: 62–69.

[14] RN Weinreb, L Zangwill, CC Berry, et al., Detection of Age-related macular

degeneration (AMD) with scanning laser polarimetry, Arch Ophthalmology, 1999;

117:1298-1304

[15] JR Trible, RD Schultz, JC Robinson, et al. Accuracy of scanning laser polarimetry in

the diagnosis of Age-related macular degeneration (AMD), Archives of Ophthalmology,

1993; 117:1298-304

62

APPENDIX

Clc

clear all

close all

[input, pathname] = uigetfile('*.jpg');

if isequal(input,0)

 disp('User selected Cancel')

else

 disp(['User selected ', fullfile(pathname, input)])

end

inpimg=imread(input);

imshow(inpimg)

title('input image ')

%For disk image

red=inpimg(:,:,1);

green=inpimg(:,:,2);

%figure,imshow(green)

%title('green max image ')

black=inpimg(:,:,3);

nefilt=green>130;

binaryImage=nefilt;

% Get rid of stuff touching the border

binaryImage = imclearborder(binaryImage);

fill=imfill(binaryImage,'holes');

 flatten1=strel('disk',6);

diskimg=imdilate(fill,flatten1);

 %figure,imshow(diskimg)

%title('disk image ')

%For the Cup Image

nefilt=green>140;

binaryImage=nefilt;

% Get rid of stuff touching the border

binaryImage = imclearborder(binaryImage);

63

cup=imfill(binaryImage,'holes');

flatten2=strel('disk',2);

dilate=imdilate(cup,flatten2);

cupimg=dilate;

%figure,imshow(cup)

%title('cup image ')

% Extract only the two largest blobs.

BW=binaryImage ;

CC = bwconncomp(BW);

numPixels = cellfun(@numel,CC.PixelIdxList);

[biggest,idx] = max(numPixels);

BW(CC.PixelIdxList{idx}) = 0;

filteredForeground=BW;

figure, imshow(BW);

binaryImage = imfill(binaryImage, 'holes');

% % Display the binary image.

dis(:,:,1)=immultiply(binaryImage,inpimg(:,:,1));

dis(:,:,2)=immultiply(binaryImage,inpimg(:,:,2));

dis(:,:,3)=immultiply(binaryImage,inpimg(:,:,3));

a = diskimg;

stats = regionprops(double(a),'Centroid',...

 'MajorAxisLength','MinorAxisLength');

centers = stats.Centroid;

diameters = mean([stats.MajorAxisLength stats.MinorAxisLength],2);

radii = diameters/2;

% Plot the circles.

 figure,imshow(inpimg)

hold on

viscircles(centers,radii);

hold off

figure

subplot(3,3,1)

imshow(inpimg)

64

title('input image ')

subplot(3,3,2)

imshow(diskimg,[])

title('disk segment image ')

subplot(3,3,3)

imshow(inpimg)

hold on

viscircles(centers,radii);

hold off

title('Disc boundary')

subplot(3,3,4)

imshow(dilate,[])

title('cup image ')

subplot(3,3,5)

imshow(inpimg)

hold on

viscircles(centers,radii/2);

hold off

title('cup boundary')

c1=bwarea(diskimg);

c2=bwarea(dilate);

cdr=c2./(c1)

rim=(1-dilate)-(1-diskimg);

RDR=bwarea(rim)./(c2);

nn=sprintf('The CDR is %2f ',cdr)

msgbox(nn)

pause(2)

nn1=sprintf('The RDR is %2f ',RDR/2)

msgbox(nn1)

pause(2)

if cdr<0.45

 msgbox('NO AMD')

elseif cdr <0.6 & cdr>0.45

65

 msgbox('AMD DETECTED:Medium risk')

else cdr>0.6

 msgbox('AMD DETECTED:High risk')

end

